Spectral Estimation of Conditional Random Graph Models for Large-Scale Network Data

نویسندگان

  • Antonino Freno
  • Mikaela Keller
  • Gemma C. Garriga
  • Marc Tommasi
چکیده

Generative models for graphs have been typically committed to strong prior assumptions concerning the form of the modeled distributions. Moreover, the vast majority of currently available models are either only suitable for characterizing some particular network properties (such as degree distribution or clustering coefficient), or they are aimed at estimating joint probability distributions, which is often intractable in large-scale networks. In this paper, we first propose a novel network statistic, based on the Laplacian spectrum of graphs, which allows to dispense with any parametric assumption concerning the modeled network properties. Second, we use the defined statistic to develop the Fiedler random graph model, switching the focus from the estimation of joint probability distributions to a more tractable conditional estimation setting. After analyzing the dependence structure characterizing Fiedler random graphs, we evaluate them experimentally in edge prediction over several real-world networks, showing that they allow to reach a much higher prediction accuracy than various alternative statistical models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring

Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...

متن کامل

Conditional estimation of exponential random graph models from snowball sampling designs

A complete survey of a network in a large population may be prohibitively difficult and costly. So it is important to estimate models for networks using data from various network sampling designs, such as link-tracing designs. We focus here on snowball sampling designs, designs in which the members of an initial sample of network members are asked to nominate their network partners, their netwo...

متن کامل

Minimum Entropy Estimation of Hierarchical Random Graph Parameters for Character Recognition

2.1 Entropy and mutual information In this paper, we propose a new parameter estimation method called minimum entropy estimation (MEE), which tries to minimize the conditional entropy of the models given the input data. Since there is no assumption in MEE for the correctness of the parameter space of models, MEE will perform not less than the other estimation methods such as maximum likelihood ...

متن کامل

Snowball sampling for estimating exponential random graph models for large networks

The exponential random graph model (ERGM) is a well-established statistical approach to modelling social network data. However, Monte Carlo estimation of ERGM parameters is a computationally intensive procedure that imposes severe limits on the size of full networks that can be fitted. We demonstrate the use of snowball sampling and conditional estimation to estimate ERGM parameters for large n...

متن کامل

SPOT-5 Spectral and Textural Data Fusion for Forest Mean Age and Height Estimation

Precise estimation of the forest structural parameters supports decision makers for sustainable management of the forests. Moreover, timber volume estimation and consequently the economic value of a forest can be derived based on the structural parameter quantization. Mean age and height of the trees are two important parameters for estimating the productivity of the plantations. This research ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012